Total Energy Production and Phosphocreatine Hydrolysis in the Isotonic Twitch
نویسندگان
چکیده
Using frog's sartorius muscles we have found no correlation between phosphocreatine hydrolysis and shortening under conditions (iodoacetate poisoning and anoxia) where this reaction was the only expected source of energy. Phosphocreatine hydrolysis did, however, show a constant term corresponding to the activation heat of A.V. Hill, and a linear term with work. It was concluded that shortening heat comes from some other chemical reaction, or else Hill's equation (E = A + W + ax) fails to describe correctly the energy output in a complete cycle of contraction and relaxation. To decide between these possibilities direct measurements of heat and work during a complete cycle were made. Also, experiments were performed in which heat, work, and phosphocreatine breakdown were measured simultaneously on the same muscles. The total energy output in a complete twitch could be most simply represented by a fixed "activation" heat, plus the work. There was no term corresponding to the shortening heat. Hill's equation must, therefore, be held as invalid for the complete isotonic twitch. A value of 9.8 +/- 0.5 (sE) kcal/mole was obtained for the in vivo heat of hydrolysis of phosphocreatine. This quantity showed no significant dependence on load, and it is in good agreement with the value obtained from thermochemical data. It is concluded that phosphocreatine hydrolysis and its associated buffer reactions can account quantitatively for the total energy output of isometric and isotonic twitches.
منابع مشابه
Metabolic fluctuation during a muscle contraction cycle.
Gated31P-nuclear magnetic resonance followed the metabolic fluctuation in rat gastrocnemius muscle during a contraction cycle. Within 16 ms after stimulation, the phosphocreatine (PCr) level drops 11.3% from its reference state. The PCr minimum corresponds closely to the time of maximum force contraction. Pi increases stoichiometrically, while ATP remains constant. During a twitch, PCr hydrolys...
متن کاملCross bridges account for only 20% of total ATP consumption during submaximal isometric contraction in mouse fast-twitch skeletal muscle.
It is generally believed that cross bridges account for >50% of the total ATP consumed by skeletal muscle during contraction. We investigated the effect of N-benzyl-p-toluene sulfonamide (BTS), an inhibitor of myosin ATPase, on muscle force production and energy metabolism under near-physiological conditions (50-Hz stimulation frequency at 30 degrees C results in 35% of maximal force). Extensor...
متن کاملPatterns in mammalian muscle energetics.
A description of cellular energetics of muscular contraction is given in terms of the rates and extents of high-energy phosphate splitting during contractile activity, in terms of high-energy phosphate resynthesis by respiration and net anaerobic glycolysis, and in terms of the associated uptake and/or release of H+. These chemical changes have been studied quantitatively by rapid freeze-clampi...
متن کاملSpectrophotometric studies on the pH of frog skeletal muscle. PH change during and after contractile activity
The spectral characteristics of the pH-sensitive dyes neutral red (NR) and bromcresol purple (BCP) were utilized for studies of the changing intracellular pH (pHi) of sartorius muscles from Rana pipiens, both during the course of an isometric twitch and during recovery metabolism subsequent to a train of twitches. The information from the two dissimilar dyes correlated to confirm the methodolog...
متن کاملPhosphocreatine and Inorganic Phosphate in Working and Resting Muscles of Rats, Studied with Radioactive Phosphorus
The rapid hydrolysis of large quantities of phosphocreatine is one of the characteristic initial processes which occur during muscular contraction (l-3). Minimal concentrations are found after 1 or 2 minutes of work and little further change is apparent as work continues. The isotope technique would seem to offer a new approach to the question of whether the small quantity of phosphocreatine re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 46 شماره
صفحات -
تاریخ انتشار 1963